
Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

6

2 ANALYSIS

2.1 VIRTUALIZATION5

Virtualization is the technique to create an abstraction level between the hardware resources and
the software, such as an operating system (OS) and applications. Software is installed and runs in
a virtual machine (VM), which replaces – from the software point of view – the classical machine
composed by physical hardware. Obviously, the software which runs on a virtual machine uses
the physical resources. The link between the virtual machine and the real hardware is made by a
virtualization platform. For example, when the operating system want to write to the hard disk, it
actually access to a virtualized disk. The virtualization platform takes the write command and
passes it to the physical hardware.

A virtualization platform is software composed of two main parts: the hypervisor and a
management interface. The hypervisor is the layer between the physical hardware and the
software installed on the virtual machine. It provides four main functions (1):

• Hardware emulation. This means the hypervisor presents a virtual hardware

environment to the software which runs on the VM. It manages and shares the hardware

resources with the other applications which run on the physical machine.

• Isolation between multiple VMs. If a hypervisor can provide multiple virtual

machines running concurrently, it must isolate the operations of the different VMs, i.e.

an error that occurs in a VM should not affect the others.

• Physical resources allocation. When an application wants to allocate resources, the

hypervisor must do it in the physical hardware. It must manage the allocation between

the different VMs, trying to optimize the performance.

• Encapsulation of the VM. One goal of the virtualization is the portability between

different systems, i.e. to migrate a virtual machine from a physical machine to another

one where the hypervisor is installed. The encapsulation allows transferring the entire

VM to the other machine, preserving its integrity.

The management interface provides the control of the virtual machine to the user. The most
important controls are: to launch and shut down the virtual machine, but also to freeze and
resume it, to copy and destroy it. The management interface allows also choosing the allocation
of the physical resources, like the amount of RAM, the storage size, the network interfaces and
the other I/O peripherals which the virtual machine is allowed to use.

Figure 1 illustrates the architecture of a system composed by a hypervisor which is installed on a
host OS and which manages two different virtual machines. In this case, the hypervisor uses the
host operating system to communicate with the hardware, because it is treated as the others
applications which run on the host OS.

5 Some subsections are taken or inspired from (24 pp. 10-18).

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

7

Figure 1 – Virtualization Over OS

2.1.1 Virtual Machines

The original goal of a virtual machine is to offer multiple working environments within the same
physical computer. A virtual machine is a software implementation of a hardware machine that
acts as a container which can run its own operating system and applications.

Figure 2 – Virtual Machine Structure

A virtual machine doesn’t refer to a specific kind of operating system or hardware. An empty
virtual machine comes just with a virtual BIOS boot as would be on a physical machine. The first
step before deploying specific application is to install an operating system inside the virtual
machine. The virtual machine offers a set of generic virtual hardware. Usually all the
virtualization software allow the user to set some properties of the virtual machine like the
amount of virtual memory that you want to dedicate to it or the number of processor available.

A physical computer can be powered on, powered off. These actions are also available with a
virtual machine. A running virtual machine is often called a live VM. A live VM is a virtual
machines which has been powered on. In addition, a virtual machine can be suspended.
Suspending a VM means that all the content of the virtual machine’s memory is dumped into a
file on the host system. By doing this you keep the state of the virtual machine exactly as it was
when you suspended it. Then a suspended machine can be resumed. When a VM is resumed, the
inverse process is done: read the memory dump file and load the content into the virtual machine
memory.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

8

From computers in a network, a virtual machine is seen as real physical computer. Even the
virtual machine itself thinks that it is a real physical computer. This means that a VM has its own
IP address and its own MAC address.

Basically a virtual machine is materialized as a group of files. Each file has a specific purpose. For
instance, most of the virtualization software use one or more files to hold the virtual machine file
system, another to describe the VM characteristic like the amount of memory or the number of
processor.

Finally here is a list of most of the benefits that are indeed when you use virtual machines:

• A virtual machine can run independently of the underlying physical hardware.

• A virtual machine is isolated from another VM running in the same host machine, as

they were two separated physical computers.

• A virtual machine contains a full computational environment. This mean that a virtual

machine holds a complete operating system with all the environment variables, the

applications with their variables and data.

• A virtual machine is materialized as a bunch of files on the host file system. This indeed

that transferring or moving a virtual machine consist on a simple file transfer or copy.

2.1.2 Virtualization Techniques

2.1.2.1 Full Virtualization

Full virtualization is a technique that uses a hypervisor to provide a fully emulated machine. Then
an operating system can run into this virtual machine. The advantage of this technique is the
flexibility, because the operating system and the physical hardware are not coupled. The
hypervisor mediates between the guest operating systems and the physical hardware. For this
reason, the cost of the flexibility is the performance. In fact when a guest operating system
performs a request to access the hardware, the hypervisor has to trap his request and handle it
because the physical hardware is not owned by an operating system but it is shared with all other
operating system. Unfortunately this process is time consuming. Figure 3 shows the position of
the hypervisor between the physical hardware and the guest operating systems.

Figure 3 – Full Virtualization

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

9

2.1.2.2 Paravirtualization

The main difference between the full virtualization and the paravirtualization is that in the second
one, the guest OS knows that it is virtualized. Thus paravirtualization involves modifying the OS
kernel. With this technique, the guest OS cooperate in the virtualization process. The
paravirtualization technique also uses a hypervisor. As we have said before a hypervisor is the
software responsible for hosting and managing virtual machines. It runs directly on the hardware.
Since the guest OSes are modified, the hypervisor doesn’t trap all the guest OS instructions and
this clearly involves better performance. However because of the need to modify the OS kernel,
the paravirtualization doesn’t support non-open source operating system like Windows.

Figure 4 - Paravirtualization

2.1.3 Software Appliance

A software appliance is the combination of a software application and a just enough operating
system (JeOS) in order to make it able to run on standard hardware or in a virtual machine. A
JeOS is an operating system (typically Unix-based) which contains only the set of packages
needed by the application. For instance, if we make a software appliance with an FTP server, the
operating system doesn’t need a graphical interface.

The software appliance is particularly suitable to be deployed on generic hardware as well as in a
virtual machine. This concept simplifies the installation, configuration and maintenance cycle.

2.1.4 Virtual Appliance

A virtual appliance is a software appliance packaged into a virtual machine. A virtual appliance
can run within a virtual container offered by the virtualizations tools like VMware or VirtualBox.

JeOS

Software

Figure 5 – Sofware Appliance

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

10

Also deploying a virtual appliance is even more simple that deploying a software appliance. The
only requirement is to have the suitable virtualizations tools installed.

JeOS

Software

Figure 6 – Virtual Appliance

The difference between a virtual appliance and a virtual machine is that a virtual appliance is a
fully pre-installed pre-configured software application and operating system. In the other hand, a
virtual machine is just a container to host an operating system and software.

2.1.5 VMware

2.1.5.1 VMware Server

VMware is a software company which develops a family of virtualization products. For this
project, we used versions 1 and 2 of VMware Server. VMware mostly uses the full-virtualization
technology for its products (see Section 2.1.2.1). By using the full-virtualization technique,
VMware’s virtual machines are able to host both Unix-like operating systems and Windows
operating systems. The VMware Server main characteristics are:

• available for Windows and Linux;

• Linux and Windows operating systems can be installed in the VMs;

• uses a full virtualization hypervisor;

• is free.

The main user interface of the application is the VMware Server Console. It allows controlling
and running the virtual machines which are installed on the local computer or on a remote host.
When a virtual machine is started, we can use the guest OS directly from the VMware Server
Console window. Figure 7 shows the program running a Unix-like operating system in a virtual
machine.

VMware Server Console allows creating virtual machines and set its hardware resources, like the
amount of RAM and of disk space, virtual CD-ROM devices and virtual network cards. Virtual
machines can be run, suspended, resumed and shut down. When a virtual machine is running, we
can use it like a normal machine, just clicking on the console of the VM.

A virtual machine is fully contained into a set of files. These files store the machine environment,
like the contents of the virtual hard disks, the configuration of the VM’s virtual resources and, if
the machine is not shut down, the full content of the virtual RAM. This means we can copy these
files to store a back-up of the machine, or we can move them on another computer which runs
VMware Server. Then, we can execute the virtual machine in this other PC. VMware offers some
management products (other than VMware Server) which facilitate the deployment of virtual
machines over a grid of computers.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

11

Figure 7 – VMware Server Console Running a Unix-like Operating System

2.1.5.2 VMware Server General Architecture

VMware Server can be used on a single computer and over a network. VMware Server is able to
run a virtual machine on a remote computer. In this case, the PC which stores the virtual
machine files and run it is called the host. The computers which access to the host to run a
virtual machine are the clients.

The client communicates with the virtual machine of the host from an application. This
application can be VMware Server or a program which uses the VMware API. The
communication between the client and the host is secured using the SSL protocol over TCP/IP.
Figure 8 shows the VMware general architecture over a network. However, during this project
we used VMware server only locally. This means that the host and the client are on the same
computer.

Figure 8 – General VMware Architecture

A virtual machine is composed by some files. They contain all the information about the VM.
The most important two are:

• one or more VMDK files, which contain the hard disk drives of the virtual machine and

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

12

• a VMX file, which contains the configuration of the virtual machine, like the amount of

RAM to be used and the number of processors.

2.1.5.3 Virtual Machine Files6

On the host file system, a virtual machine is composed by some files. VMware uses several file
types for its virtual machines. The most important two are (by file extension):

• VMDK: this is a binary file which stores the content of the virtual machine’s hard

disk;

• VMX: this text file contains the configuration of the virtual machine.

A VMware virtual machine is in fact identified by its VMX file; each VM has one (an no more). A
virtual machine can have one or more VMDK files. Other files used by VMware are:

• VMEM: this binary file is a full dump of the virtual machine’s memory. When the

virtual machine is suspended, one VMEM file is created to store the data in the memory.

If the VM has a snapshot taken when the VM was running, a VMEM file contains the

data in the memory when the snapshot was taken. (For more details about VMware

snapshots, see Section 2.1.5.6)

• VMSD: this text file contains some metadata about the snapshots of the virtual

machine;

• VMSN: this is a binary file containing the running state of the virtual machine’s

snapshot;

• VMSS: this is also a binary file which contains the suspended state of the virtual

machine (this file exists only when the VM is suspended).

2.1.5.4 VMware Tools

VMware Tools is a utility which can be installed on guest operating systems running on virtual
machines. It enhances the performance of the VM and adds some management control utilities.
In particular, the tools contain the VMware Tools Service, which allows transferring information
between the host and the guest operating system, like text (using copy-paste), command
invocation and files. This service is useful when we want to automate program execution on the
guest OS.

2.1.5.5 VMware API

VMware offers an Application Programming Interface (API) which is able to manage VMware
Server 1.0 from a C program. It is called “VMware VIX”(2) and allows to:

• start, suspend, resume, stop virtual machines,

• run programs in the VM and

• copy files from the VM to the computer which runs the C program, and the opposite.

6 For more information, see (25).

Andrea Cavalli
Julien Poffet

The API contains a set of functions which allow controlling a VM
This means the C program can be placed on a different computer than that which has VMware
Server installed. To access to the remote host, we have to log in using a valid username and
password of the host OS.

A snapshot is used to save a specific state of the virtual machine in order to come back to this
state later in the time. To allow that VMware has to copy and modify some virtual machine files.
This section explains what VMware really does with the virtual mac

Let’s take the case of a virtual machine which is composed by two files:

• VMDK: the virtual machine’s hard disk

• VMX: the VM

You can take a snapshot when the virtual machine is
about what happens when the virtual machine is powered off. The only thing that you need
coming back to the snapshot is to know all the changes that occurred
disk after that snapshot. VMware realizes this by crea
difference file. The delta file will contain all the modifications done by the user after the snapshot
was taken. The old VMDK file, called
disk. It is quite simple to restore a snapshot: VMware has just to delete the
modify the configuration file to use the old VMDK.

When VMware takes a snapshot of a running virtual machine
except that VMware has also to save the s

One important note about the
snapshot per virtual machine
machine, the next snapshot that you will take will

Figure

Figure 9 shows the snapshot mechanism of VMware
base VMDK file (B) and the red
the first snapshot, the base VMDK file is lock
(∆1). Now all the changes you

At the next step, when the user makes the second snapshot
file ∆1 and the base VMDK file
first base VMDK file and all the modifications done
new “empty” delta file ∆2 is created. As before, the modifications to the virtual machine’s disk
will be written inside this delta file

Virtual Machine

13

The API contains a set of functions which allow controlling a VM on local and remote hosts.
This means the C program can be placed on a different computer than that which has VMware
Server installed. To access to the remote host, we have to log in using a valid username and

2.1.5.6 VMware Snapshots

apshot is used to save a specific state of the virtual machine in order to come back to this
state later in the time. To allow that VMware has to copy and modify some virtual machine files.

what VMware really does with the virtual machine when it takes a snapshot.

a virtual machine which is composed by two files:

the virtual machine’s hard disk;

VM configuration file.

a snapshot when the virtual machine is running or powered off. Le
about what happens when the virtual machine is powered off. The only thing that you need

back to the snapshot is to know all the changes that occurred on the virtual machine’s
after that snapshot. VMware realizes this by creating a new VMDK file

file will contain all the modifications done by the user after the snapshot
The old VMDK file, called base file, is not affected by the changes done on the VM’s

imple to restore a snapshot: VMware has just to delete the delta
modify the configuration file to use the old VMDK.

VMware takes a snapshot of a running virtual machine, the main mechanism is the same
except that VMware has also to save the state of the RAM memory.

about the VMware Server snapshot mechanism is that it
per virtual machine. This means that if you already have a snapshot of your virtual

machine, the next snapshot that you will take will override the previous one.

Figure 9 – VMware Server Snapshot Mechanism

shows the snapshot mechanism of VMware Server. The first blue cube
he red cubes represent the difference files (delta). When

the first snapshot, the base VMDK file is locked in its state and a new VMDK delta
you make to the virtual machine will be written into this

next step, when the user makes the second snapshot, VMware merges the previous
file B to create a new base VMDK file B1. This last one

file and all the modifications done until when the user took the snapshot.
is created. As before, the modifications to the virtual machine’s disk

will be written inside this delta file, and the base VMDK is not modified.

Diploma Project
Virtual Machine Logbook

on local and remote hosts.
This means the C program can be placed on a different computer than that which has VMware
Server installed. To access to the remote host, we have to log in using a valid username and

apshot is used to save a specific state of the virtual machine in order to come back to this
state later in the time. To allow that VMware has to copy and modify some virtual machine files.

hine when it takes a snapshot.

or powered off. Let’s first talk
about what happens when the virtual machine is powered off. The only thing that you need for

on the virtual machine’s
ting a new VMDK file, called delta or

file will contain all the modifications done by the user after the snapshot
file, is not affected by the changes done on the VM’s

delta VMDK and

, the main mechanism is the same

snapshot mechanism is that it allows only one
a snapshot of your virtual

cube represents the
(delta). When the user takes

delta file is created
to the virtual machine will be written into this delta file.

the previous delta
This last one contains the

until when the user took the snapshot. A
is created. As before, the modifications to the virtual machine’s disk

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

14

After the second snapshot, the user can only come back to the base VMDK file B1. It is
impossible to come back to the base VMDK file B, because the difference file ∆1 created during
the first snapshot is lost and the base VMDK file B has been modified.

The snapshot mechanism is totally transparent from inside the virtual machine. When a virtual
machine has a snapshot, the data on the VM’s disk are written only on the delta VMDK file, but
are read from both base and delta files. VMware manages the access to the data on the two files
transparently for the VM user. Thanks to that, from inside the VM the file system is accessed in
the same way than if the VM has no snapshot.

2.1.5.7 VMware Server 1 and VMware Server 2 (TO DO)

2.1.6 rPath

rPath(3) is company whose use the concept of virtual appliance for applications distribution and
management. rPath offers some products which help the creation of software and virtual
appliances. We will shortly explain the main idea of theses different tools. The two main tools are
rBuilder and rMake.

2.1.6.1 rMake and rBuilder

As explained in Section 2.1.3, a software appliance contains the application we want to distribute
and all additional components needed by it, like a configured operating system, shared libraries
and other applications. rMake helps appliance developers to prepare packages which are then
converted into software or virtual appliance using rBuilder. Figure 10 shows the rPath tools work
flow.

With rMake we can create packages for different target users. A kind of target user is called group
and has some specific environment needs. For example, Java developers need the Java virtual
machine and maybe Eclipse in their appliance, and python developers need the python
framework and maybe a text editor to develop their applications. The list of software
requirements for a certain group is stored in a file called recipe.

rMake uses the recipe to pull the software together and build the appliance group, which is the
package containing the appliance with the group-specific requirements. In Figure 10, the generic
packages are the yellow and the orange cylinders, and the group-specific software is represented
by the blue one.

rBuilder is a tool that automates the creation of software appliance and virtual appliance and ease
their distribution. rBuilder converts appliance groups generated by rMake into appliance images.
For the appliances distribution, rBuilder provides repository which can be accessed through a
web-based front-end.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

15

Figure 10 – Appliance Development with rMake and rBuilder7

2.1.6.2 Agent

The appliance created by rPath comes with a built-in web interface. This interface allows the user
to perform some basic management tasks on the appliance, for example adding a new user inside
the appliance or reboot the machine.

The rPath Appliance Platform Agent (rAPA) is an extensible application framework that
provides a web-based administration interface for the appliance. To manage an appliance which
uses the Agent, access the web interface by using one or either of the following in a web browser:

• https://<appliance_hostname>:8003

• http://<appliance_hostname>:8004

The rPath Agent comes with some functionality and you can add your own functionality by
adding a plugin to the agent.

A plugin in the rAPA consists of Python code and related files used to accomplish a particular
administrative task on the appliance. The agent loads the plugins at startup , renders their
interfaces on the web interface and executes their underlying functions.

A plugin is separated in two different components:

Web Component: The web component handles user interaction through the agent’s web
interface.

7 Image source: (28 p. 2)

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

16

Service Component: The service component handles prolonged tasks or tasks requiring root
privileges.

The web part of the plugin is used to render an HTML interface and handles the user interaction.
The function of the web component can be exposed with an XML-RPC interface to allow
remote plugin calls, for instance from a program. The service part of the component has to be
added only if you plugin will handle prolonged task or requiring root privileges. The usual
schema is to access the web part of the plugin through the web interface or by calling a function
through the XML-RPC interface. Then the web part will perform some job and schedule a task
which will be executed by the service part of the plugin.

The rAPA offers different ways to handle the request by your plugin: immediate execution or
scheduled execution. Say that you have to choose if your task will be synchronous or
asynchronous. If your task takes a long time you better use the scheduled task and then poll to
display the advancement of your task in the web browser. The immediate task is conceived to be
used with tasks which complete quickly.

Figure 11 shows an overview of the rPath Agent structure. At the right hand side we have the
different interfaces such as HTML and XML-RPC. These interfaces give you an access to the
web part of the plugin.

Figure 11 – rPath Agent structure

The rAPA integrates a database and you have the possibility of creating a table inside it. The
plugin can use the database to save some information about the task to perform.

Basically the web component posts one or more tasks and write information about these tasks in
the database. Then the service plugin fetches and execute these tasks. The service component
uses a private XML-RPC interface to call back the web service in order to retrieve some
information stored in the database.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

17

2.1.6.3 Web Interface

Once you have an rPath virtual appliance ready to use, the first thing to do is to run it and access
it by its web interface to configure your appliance. You cannot bypass this step because the
appliance comes without any accounts, so you cannot SSH the appliance to configure it. One of
the goals the web interface could be to setup a root account for you for instance.

The rPath web site lets you try one of their virtual machine by running it over a cloud. I did it in
order to illustrate the following explications. The idea is that you launch a virtual machine on the
cloud and then you add software to it. In this example the software is a media wiki. So they let
you configure the wiki and allow you to access it at the end of the process.

When the virtual machine is properly started, you have to retrieve its hostname or IP address and
enter the address in your browser like https://hostname:8003. Then you get the authentication
screen. You authenticate by giving the default admin login and password. Then the appliance
asks you to change the default admin password. Then comes the step specific to this example:
the media wiki configuration (showed in Figure 12).

Figure 12 – Virtual Appliance Configuration

After this step, the wiki is ready and fully configured on the virtual machine. To access the wiki,
we have just to click on the link provided by the web interface.

To resume here is the steps that we just done:

• Launch a virtual machine on a cloud,

• Access the virtual machine by its web interface,

• Change the default admin password,

• Add the media wiki software to the appliance and configure it,

• Access the media wiki.

2.1.7 Open Virtualization Format

Almost all virtualization software uses its own format to package, encode and distribute virtual
machines. This means that for now, for instance VMware is not able to run a virtual machine
created with Xen. Because of the success of virtualization, now there is a need of a standard way

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

18

to package and distribute a virtual machine without regarding to underlying virtualization tools
used.

This lead to the idea of a new virtual machines format: Open Virtualization Format (OVF). OVF
is both a platform independent, extensible and open packaging specification and a distribution
format for virtual machine. For instance we can say that the goal of OVF is to make possible to
deploy a single OVF package either Xen or VMware.

For instance with VMware, each virtual machine is described with a VMX file. This configuration
file contains information about the virtual hardware used by the virtual machine. The VMX file is
proprietary format of VMware. So the idea is to replace this file by an OVF file which is more
generic than the VMX one.

Today VMware already offer tools which allow the conversion between a VMware virtual
machine and an OVF package and vice versa. With this mechanism we can for instance imagine
that a virtual appliance prepared with VMware could be distributed in the OVF format and then
converted as a Xen image by passing through an OVF-Xen conversion tool.

There is already an open source library and tools called Open-OVF which support the OVF
format. The main goal of Open-OVF is to provide a complete API for creating, using and
maintaining OVF packages.

Figure 13 – OVF In the Virtual Machines Lifecycle

Figure 13 shows how OVF is intended to be used in the virtual machines lifecycle. Converters
are used to prepare OVF packages for the virtual machines distribution. Before to be used,
virtual machines contained into OVF packages must be converted to the target virtualization
format.

2.1.8 LibVirt

Now there are many virtualization software available on the market. The bests known are of
course VMware, VirtualBox and Xen but there is some other software who are less popular such
Virtual PC, KVM, QEMU, LXC, OpenVZ, … With the large number of different software
available comes the need to define a common interface between all these platforms. That is the
goal of libvirt.

Libvirt comes as a toolkit written in C which works as an intermediate software layer between the
user and the underlying virtualization tools. Libvirt offers an API to use all the basic virtual
machine management functionalities like start, stop, suspend and snapshot.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

19

Figure 14 – Libvirt Architecture

The advantage of this additional layer offer by Libvirt is that a program which uses Libvirt will
automatically support some different virtualization tools. Otherwise the program has to be
adapted for each virtualization tool API. Although Libvirt is written in C, bindings to support
other languages than pure C are available, such as for Python, Java, C#, Perl. Figure 14 shows
how Libvirt can be used to manage different virtual machines format from application written in
multiple programming languages.

At the moment we wrote this report, Libvirt was still in development but very promising.

2.2 BACKUPS AND VERSION CONTROL

2.2.1 Backups8

In computer science, do (or take) a backup means make a copy of data and store it. The goal of
taking backups is to be able to restore the duplicate when needed. For instance, if the original
data has been lost, it is possible to restore the backup. The copy of the data is also called backup.

Taking backups may need a large amount of storage space. Therefore, there are techniques whose
objective is to reduce the storage space occupied by backups. If we must do a backup of a file, we
are forced to take a full copy of it. But if after this first backup we must take another backup of
the same file and the file has not changed, it is unnecessary to store a second identical copy of it.

Let’s apply this principle to a folder that contains a large number of files. During the first backup,
all the files are copied for backup storage. During the second backup, only the files which have
been modified since the first backup have to be stored. Storing the files which have not been
modified is unnecessary.

What happens if the original folder is lost and we have to restore the last backup? We have to
copy back (or restore) the content of the first backup and then copy back the content of the
second one. The second backup cannot be restored without the first one. Because of that, we say
that the second one depends on the first.

The first backup is a full one, because it contains all the files of the folder. The second one is a
partial backup, because in principle it does not contain all the files of the folder9, but just a part

8 For more information, see (21)

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

20

of them. There are two main ways to take and restore partial backups: incremental and
differential backups.

2.2.1.1 Incremental and Differential Backups

When using incremental technique, each incremental backup contains the files which have been
modified since the last backup (any type). This means that each backup depends on the last one.
To restore the last backup, it is necessary to start with the first one and then add the content of
each following incremental backup. Because the time needed for restoring a long chain of
incremental backups may be important, it may be appropriate to take a full backup after a certain
number of incremental backups. Then all the chain of backups can be deleted, because we no
longer need it.

With the differential technique, we always have only one differential backup. The backup
contains the files which have been modified since the full backup. Restoring a differential backup
consist always in copying back the files of the full backup and then those of the differential one.
Restoring differential backups is then simpler and faster than restoring differential backups. On
the other hand, differential backups usually need more storage space. If most of the files have
been modified since the full backup, the next differential backups will have almost the same size
than the full one. In this case, it is better to take a full backup instead of a differential one, and
then delete the differential and the old full backup.

2.2.1.2 Backup Strategy

In the last sections we presented the three types of backups: full, incremental and differential.
They can be combined to increase the performance and save disk space. Let’s see how with an
example.

Consider we have to keep daily backups of a whole disk. Take a full backup every day is too
expensive in term of disk space and performance. Because of that, we create a full backup only
once, and then we use partial backups. We have seen in last Section that taking too many
incremental backups is not a good idea, because then the recover process becomes too long.
Differential backups don’t have this problem, but when the amount of data modified on the disk
since the full backup is big, differential backups become too big. The problem in this case is the
performance: taking the differential backup requires too much time.

A good solution is to combine full, incremental and differential backups. An example of backup
strategy is:

• from Monday to Thursday: take incremental backups;

• on Friday: take a differential backup, then delete all incremental backups taken during

the week and the last Friday’s differential backup;

• on the last day of the month: take a full backup and delete all old full, incremental and

differential backups.

With this backup strategy, we always have at least one full backup, zero or one differential
backup and zero to four incremental backups (depending on the day of the week). As said before,

9 Unless all the files has changed.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

21

the differential backup always contains the changes since the full backup, and an incremental one
contains the changes since the last backup (full, differential or incremental).

If the disk crashes, we can always restore its state as it was the day before. The recover process
works as following:

• Restore the full backup: get the state of the disk as it was on the beginning of the current

month;

• then restore the differential backup (if it exists): get the state of the disk as it was at the

beginning of the current week;

• then restore the chain of incremental backups (if there are incremental backups).

2.2.2 Version Control

Version control systems (or versioning systems) are used to keep a history of the changes done on a set
of files. While the goal of the backups is to be able to restore an up-to-date copy of the data, the
goal of a versioning system is allow restoring any old version of the data.

A versioning system allows taking files backups. The difference with a “standard” backup is that
the one taken with the versioning system has an identifier – a version – and is never deleted10. A
user who wants to restore a backup has to give the version of the backup he needs.

Imagine you do a backup of your files at the end of each day of work and that you need a file you
deleted two weeks ago. With the backup system, you can restore the backup you did yesterday,
but not an older one11. On the contrary, if you were using a versioning system, the day before
you deleted the file you would have taken a “versioned backup” of your folder, and now you
would be able to restore this version.

Since a version is a backup of data, the full, incremental and differential backups can be used in
the versioning systems to gain disk space. The versions are stored into a central repository that is
accessible through the versioning system operations.

Applications that implement versioning systems generally offer more functionality than the basic
operations (save and restore a version). For example they offer versions history management, the
comparison of two different versions, the sharing among users and the concurrent access…
Tools like CVS (Concurrent Versions System, (4)) and SVN (Subversion, (5)) are examples of
applications that offer a large number of functionality besides the basic version management.

2.3 FILE VERIFICATION

2.3.1 Comparison By Hash12

File verification is used in telecommunication to verify if the transfer of a file is successful. In
particular the verification is used to check the integrity of the file (i.e., the content is not

10 Unless the user wants to delete it, of course.

11 You may have some intermediate backups (differential and/or incremental), but their purpose
is not to restore a particular version of your data.

12 More information can be found in (19), (20).

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

22

corrupted by transmission errors) and the authenticity (i.e., the file has not been modified during
the transfer). File verification is not only used in telecommunication: it can also be used to check
if a file on the hard disk has been modified, for example by a virus or after a hardware crash.

In both examples, we cannot verify the content with a file-by-file comparison: after a transfer, on
the local computer we have only one copy of the file and for the verification of a file after a given
time, we don’t have two copies to compare.

The most popular solution is to compute a hash value of the original file and compare this value
with the value computed after the transfer or after a given time. A hash is a value computed with
a deterministic algorithm using all the bits contained into the file, and can be seen as a sort of
fingerprint of the file.

In telecommunication, the hash is computed from the sender before the transfer and is sent with
the file to the receiver. The receiver computes the hash on the received file and compares the
value with the one got from the sender. If the values are different, the transmission failed. If the
values are the same, the transmission probably13 succeeded. To be able to verify if a file on a disk
changes, we must compute the hash value and store it for later comparisons.

The number of possible different inputs of a hash function is bigger than the number of possible
outputs. Because of that, hash collisions are possible: two different files can have the same hash
value. In this case, we talk about false positive: the file check result is positive, but it should be
negative. Only a comparison bit-per-bit of the source file with the destination file can assure that
the destination file is the same than the source. However, hash collisions can often be considered
negligible for random file corruptions.

2.3.2 Hash Functions and Checksum

There are several algorithms for computing hash values. Each algorithm has different
characteristics; some algorithms are designed to be cryptographically secure: this means that it is
difficult to intentionally modify the content of the file without changing the hash value. Other
algorithms don’t use cryptographic functions and should be used only to verify files which are
not modified with the intention to keep the same hash value.

Another interesting property of the hash functions is the computation cost. Since we need to
parse the whole file to compute the hash value, the complexity of the function is typically O(n),
where n is the size of the file. However, we can compare the computation cost of different hash
functions with O(n) complexity: different hash functions and even different implementation of
the same hash function can have different computational costs.

2.4 CERN SPECIFIC SOFTWARE

2.4.1 Athena

Athena (6) is the framework used in the ATLAS experiment at CERN for physics data-
processing applications. It is composed by a large number of reusable components for the
management and control of the experiments on the LHC particle accelerator, for simulations and

13 we cannot assure at 100% that the transmission succeeded by a hash values comparison. The
reason is explained below.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

23

data analysis. Other components provide services like the data retrieval and conversion, random
numbers generation, configurations management, communication between components, history
keeping…

Physicists at CERN develop their analysis applications by combining and configuring the Athena
components and by adding their own code, which contains the application logic.

2.4.2 CernVM

The complexity and the heterogeneity of the hardware and software environments used by the
physicists at CERN often causes compatibility problems. It is often required to reproduce the
environment of a machine on another computer, but that could be difficult. The solution
proposed by the CernVM project is to use virtual machines to avoid the complexity of
reproducing an entire environment.

A virtual machine, as seen in Section 2.1.1, contains a whole environment. The idea of CernVM
project is to provide virtual machines in where the physicists will work. Since a virtual machine
can be transferred as a common file, the transfer of the entire environment contained into the
virtual machine is very simple.

The virtual machines provided by CernVM are simply configurable for the user needs. The VMs
are prepared to be used to develop and run analysis on LHC experiments data. Thanks to the
virtualization, the virtual machines are independent of the hardware and the software platform (in
particular, they are OS-agnostic). This ends up with a portable analysis environment.

2.4.2.1 Technology

To reach their goal, the CernVM team used many different tools. One of them is rBuilder from
rPath (see 2.1.6.1). With this tool, CernVM can provide virtual machines containing a minimal
Linux distribution which includes adequate tools to run the application and experiment software.

The virtual machine provided comes in different format:

• Raw file system image for Xen,

• VMware image,

• Hard disk image for Parallels (Mac) or QEMU (Linux).

The idea of CernVM project is to distribute a very small virtual machine in term of size (about
100 MB). When you download your appliance from the CernVM web site you get a thin OS with
minimal software inside it. The software used by the physicist for their analysis may take a lot of
disk space (about 10 GB). Of course we don’t want to have all this software inside the virtual
machine. Basically what they do is to make all these software available on a network location
accessible by anyone working in the LHC experiments. This location is called software repository.
Without entering in the details, the idea is to download and cache only what is needed by the
physicist during his work. To do that some networking file system technique are used. Figure 15
shows an overview of this principle.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

24

Figure 15 – CernVM Appliance14

Thanks to rPath, all virtual machines come with a web user interface (see 2.1.6.3). This interface
allows simple configuration management on the VM. The web interface can be extended and
customized by adding plugins (see 2.1.6.2). The CernVM team did that in order to add CERN
specific behavior to the virtual machine. Here is a non exhaustive list of the functionalities the
CernVM plugin provides:

• Configure a first sudo user account,

• Set the root password,

• Select your software requirements for the virtual appliance;

• Set file system options.

Figure 16 shows how the web interface of the rPath appliance with the CernVM plugin looks
like.

14 Image source (29 p. 19)

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

25

Figure 16 – VM Configuration Through the CernVM Plugin

At CERN there are four different experiments: ATLAS, ALICE, CMS and LHCB. Each
experiment has some specific software requirements. Through the CernVM plugin you can set
which experiment you belong to, by selecting a virtual organization group.

After choosing your virtual organization group, your virtual machine will be updated in order to
meet your virtual group software needs. This process is called migration and is provided by rPath.
During the migration, software is automatically downloaded from the CernVM website and
installed on the virtual machine. Indeed your virtual machine will grow in term of size.

After the migration, your virtual machine is personalized to meet your software requirements.
The migration mechanisms is also used to keep the software inside the virtual machine up-to-
date.

2.5 TAR

Tar is a program which provides the ability to create tar archives. Tar is both the name of the
program and the file format of the files it handles. The name tar comes from Tape Archive. This
program was initially used for tape backup and other sequential access devices for backup
purposes. Today this tool is commonly used to collect some files together into another file called
archive. Tar can be used for many purposes, like storage, backup and transportation.

In addition to data archiving, tar can compress the data inside the archive (with an external
compression utility) to save disk space. The compression utility can be used in pair with tar by
setting some tar options.

2.5.1 Incremental Backups

Tar offers a mechanism to perform incremental backups. Remember that the idea of incremental
backups is that you save only the difference between now and the previous backup (Section

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

26

2.2.1.1 explains the incremental backup mechanism). The first backup will be a full one which
contains all the files to save. Next backup will contain only the differences: this is the incremental
backup. Each incremental backup is based on the previous one.

Basically what tar do to apply this incremental backup concept is creating an additional file with
metadata. This file is commonly called manifest file or snapshot file. The purpose of this file is to
help determining which files have been changed, added or deleted since the last backup, so next
incremental backup will contain only the modified files. During the first backup, the manifest file
is created. Next backup will then be based on this manifest file and so on.

When extracting files from the incremental backup, tar attempts to restore the file system in the
exact state it was when the archive was created. Tar will also delete files that did not exist in their
directories when the archive was created. This is the normal behavior for the incremental archive.
Of course, you can set an option to keep the old files when extracting from an incremental
archive in order to reproduce the same behavior than a normal tar archive. To restore a chain of
incremental backups, you have to start from the full one and then restore all the incremental
backups.

Note that tar uses the files time stamps to determine which files have been modified since the
last backup. If the system clock is set backwards for any reasons, the backup mechanism could be
unreliable.

A file has three different time stamps: access time, modification time and creation time. The
information stored in the manifest/snapshot file is based on these three different time stamps.
Usually the access time doesn’t really matter when doing backup. This time stamp can be updated
when a read access is made on the file. When tar restores the files from an incremental backup, it
also restores the time stamps of the files. You can think that it will be a problem for the
directories. When tar extracted a whole hierarchy of files and directory, it needs to first create
new directory, and then copy the files inside it. When doing this, the time stamp of the directory
will be updated. To avoid this, tar maintains a list of the directory created and at the end of the
process, when all the files are extracted from the archive, it restores the time stamps of all the
directories.

The time stamp that tar will not update during the extraction is the creation time. This doesn’t
means that tar is not able to restore the exact state of the system. In contrary this behavior is
normal. Say you did a backup of a directory, and then you modify some files and create new
ones. Next incremental backup must contain all files which have a creation or modification date
newer than the last backup date. However, before to take the backup, you extract a tar archive in
the directory, and all files in the archive have a modification and creation time older than your
last backup. When extracting the files, tar sets the original files modification time, but does not
modify their creation time (which is set by the file system to the present, i.e. after the last
backup). If during the file extraction tar had set the creation time to the original time, the next
incremental backup would not contain the extracted files, which would be wrong.

2.6 SSH

SSH (Secure Shell) is a network protocol that creates a secure connection between two network
devices. It provides strong authentication and secure communications over unsecure
communication channels. This program is usually used to log into another computer over a
network in order to launch some remote commands or transfer files to or from this machine.

SSH works on a client/server model. The remote machine must run a SSH server that listen to
the SSH port (TCP port #22). Then the client send requests over the SSH client to the remote
machine. Both machines can be the server and the client at the same time; that configuration
permits to open a two-ways secure communication channel.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

27

Usually the authentication is made by typing a password. This is annoying if you want to
automate the authentication mechanism in a script. A solution is to use the key-based password-
less authentication.

To setup a key-based authentication, the first thing to do is to generate a pair of cryptographic
keys. One is the private key; the other is the public key. The public key will reside on the servers
being connected to, while the private key must remain on a secure local area of the client system.

An SSH key-based authentication can be done in one way or in both ways, to establish single or
both-ways SSH channels. If you want to setup it in both ways, the public keys must be exchanged
between both machines. The password of the server must be provided by the client only at the
public key transfer. Once the keys are exchanged, the client is free to log in the remote server
without typing a password.

Figure 17 – Public Keys exchange

Even if SSH was primarily used on Linux based operating system to access shell accounts, it
works also on the others major operating system such as Windows (with PuTTy) and Mac OS X.

2.7 NETWORK FILE SYSTEMS

The file system’s goal is to store and organize computer files and their data to ease their research
and access. When we talk of network file system, we add the network notion. This means that the
file system will work over a computers network. It is usually used to share files, printers or other
resources.

Ideally a network file system should appear to its user as a normal file system: the network
complexity should be hidden to the user. In this section we present some implementation of
network file systems.

Andrea Cavalli
Julien Poffet

Filesystem in Userspace (FUSE) exports the file system func
loadable kernel module for Unix

FUSE is particularly useful for writing virtual file systems. The idea is to mount in the file system
a directory which point to FUSE. All system call
directory will be handled by the FUSE

Figure 18 shows the path of a filesystem call
a command on the directory managed by FUSE (
call, in this case stat (used to get information about a file system object like a file or a directory)
Since the system call is addressed to a directory managed by FUSE, it is sent to the FUSE kernel
module to be treated. In this example, the FUSE module uses the
information about the file system object and return it to the caller.

Figure 18 –

FUSE includes theses features:

• a library API which allow developers to write their own file systems,

• simple installation (no need to patch or recompile the kernel)

• userspace – kernel interface is very efficient

• usable by non privileged users

15 Web site: (30)

16 Image source: (31)

Virtual Machine

28

2.7.1 FUSE15

Filesystem in Userspace (FUSE) exports the file system functionality to userspace. FUSE is a
loadable kernel module for Unix-like operating systems.

FUSE is particularly useful for writing virtual file systems. The idea is to mount in the file system
a directory which point to FUSE. All system calls made by applications or the user

by the FUSE kernel module.

shows the path of a filesystem call on a directory managed by FUSE. The user launches
a command on the directory managed by FUSE (/tmp/fuse). The command executes a system
call, in this case stat (used to get information about a file system object like a file or a directory)
Since the system call is addressed to a directory managed by FUSE, it is sent to the FUSE kernel

In this example, the FUSE module uses the ./hello program to retrieve the
information about the file system object and return it to the caller.

– System Call Path On a FUSE-Managed Directory16

es:

which allow developers to write their own file systems,

imple installation (no need to patch or recompile the kernel),

kernel interface is very efficient,

sable by non privileged users.

Diploma Project
Virtual Machine Logbook

tionality to userspace. FUSE is a

FUSE is particularly useful for writing virtual file systems. The idea is to mount in the file system
or the user to this

The user launches
executes a system

call, in this case stat (used to get information about a file system object like a file or a directory).
Since the system call is addressed to a directory managed by FUSE, it is sent to the FUSE kernel

program to retrieve the

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

29

2.7.2 Parrot17

Parrot is a tool which acts as an intermediate layer between ordinary programs and remote
storage systems accessible via HTTP, FTP or even Chirp (presented in Section 2.7.3). Figure 19
shows an overview of the Parrot mechanism.

Figure 19 – Parrot overview18

Parrot makes a remote storage system appear as a usual local file system to applications. The
power of Parrot is that it doesn’t require any special privileges, any recompiling or any change to
the application that you want to use with.

2.7.3 Chirp19

Chirp is a distributed file system which is easily deployed without special privileges, and provides
strong and flexible security mechanisms. Chirp allows file sharing over the wide area network.
This tool is commonly used in grid computing to share data between many computers to solve
data intensive problems.

Chirp works in a client/server model. The user who wants to share data on his computer simply
launches a Chirp server. The Chirp server makes available on the network a part of the server’s
file system. Then a Chirp client will be able to access easily this file system remotely.

One of the major advantage of Chirp is that it doesn’t require any sort of administrator privileges
to access the data. This means that you can connect a Chirp client to a Chirp server without
having a valid account neither a password on the remote server. Chirp gives the possibility to the

17 More information can be found in (32)

18 Image source: (33)

19 More information can be found in (34)

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

30

user to set a fine-grained access list (ACL) on the server to control that the data will be shared
only with allowed people.

Figure 20 – Overview of the chirp filesystem20

Figure 20 shows the main components of Chirp. Chirp can be used in many ways. A library
called libchirp is provided and allows clients to program directly to the Chirp protocol. This could
be useful if we are writing a program that need to control finely the Chirp protocol, but the
workload could be too important. Instead of doing this, Chirp encourage user to connect an
adapter to their library such as Parrot or FUSE (see Sections 2.7.1 and 2.7.2). These adapters will
mount the file system shared by the Chirp server as an ordinary local filesystem. This is the best
method if you want to make tier software work with the remote file system without writing
yourself the invocations from your software to libchirp.

Chirp also provides a command line tool (Chirp client). This allows you to connect to a server,
copy files and manage directories, much like an FTP client.

Chirp also send periodic updates on a well-know catalog server. The catalog server can be
accessed by a web browser via HTTP to obtain a global list of available servers.

2.7.4 SSH FS

SSH FS is a filesystem client based on the SSH file transfer protocol (see Section 2.6). It allows a
secure access to remote files. The implementation of SSH FS uses FUSE (see Section 2.7.1).
Since most servers run an SSH daemon, the use of SSH FS is pretty simple: you just need to
login to the remote server in order to mount the remote filesystem locally. Then the files in this
mounted directory will appear just as if they were local files.

20 Image source: (35 p. 4)

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

31

2.7.5 File Systems Synchronization

File systems synchronization in computer science refers to the technique used to keep two or
more locations up-to-date with the same files. If a file is added, changed or deleted in one
location, the other locations will be updated with this modification.

The synchronization can be one-way or both-ways. If the synchronization is both ways, the most
up-to-date files will be available at both locations, regardless of where they were modified.

A synchronization one-way is commonly called mirroring. This means that the files will be
synchronize only from a source location to a target location.

To synchronize two directories a solution could be to copy each time the entire directory. Indeed,
this is not an efficient way to do it. A good sync program will compare the differences between
the two locations and synchronize only the differences. To be able to that remotely, a server has
to be installed on the remote computer. To gain time and to limit the traffic flow over the
network, the differences can be compressed before the transfer over the network.

2.7.5.1 Rsync21

Rsync is an open source tool to perform fast incremental file transfer. Rsync use a algorithm
which allows transferring very efficiently the difference between a file already present at the
destination location and its new version in the source location.

Rsync is able to copies files either to or from a remote host, or locally on the current host. Rsync
cannot be used to transfer files between two remote hosts. One of them must be local.

2.7.5.2 rdiff-backup22

Rdiff-backup is backup tool written in python. The goal of rdiff-backup is to take the best
features of mirroring and incremental backups. Rdiff-backup is built on top of librsync (the
implementation of Rsync). This software can be used to take incremental backups of a part of a
remote file system. The first backup will contain all the files and then, thanks to the Rsync
algorithm, only the differences will be transferred.

The directory which contains the backup files is called repository. Rdiff-backup saves extra
reverse diffs in a special directory. These additional files allow rdiff-backup to keep a version
history and come back to an old version. This is one of the main advantages of rdiff-backup.
This allows you to ask rdiff-backup to restore from your backup directory all the files as they
were 5 days ago for instance.

Another advantage is that the repository contains the mirrored arborescence of the source
location. In other words, the target directory ends up a copy of the source directory, plus the
extra reverse diffs. This means that if you want to restore your last backup you can just copy back
the top directory in the desired location. You don’t have to use rdiff-backup to restore these files.
You must use the tool only if you want to restore a specific old version of the directory. In this
case the tool will apply the differences stored in the repository to recreate the old file.

21 Web site: (27)

22 Web site: (26)

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

32

Rdiff-backup needs a POSIX operating system. Rdiff-backup works on Windows, but this
configuration is less well tested than the UNIX version which is considered stable.

2.7.5.3 Archfs

Archfs is a tool to use in pair with rdiff-backup (see 2.7.5.2). The incremental backup system
used by rdiff-backup is very efficient to save disk space, however it has its drawbacks. Users can
access files from most recent rdiff-backup easily by just accessing the backup directory. Browsing
and displaying the oldest version is more painful.

The aim of Archfs is to build a userspace filesystem by using FUSE (see 2.7.1) and display in a
friendly manner the content of the rdiff-backup directory. The file system mounted by Archfs is
read-only so it can be used only to browse the backup.

2.8 COMPUTER SCIENCE THEORY

2.8.1 Design Patterns

In software engineering, a design pattern is a general reusable solution to solve generic problems.
We used a couple of patterns in our application. So we will present here their concepts.

Singleton: the singleton pattern is used when you need that there is only one instance
of a specific object.

Factory method: The factory method pattern deals with the objects creation. It allows to
creates an objects collection without specify exactly the classes.

2.8.2 Trees

In computer sciences, trees are a very common data structure. Trees are a useful and efficient
way to represent data with a hierarchical structure. A tree is composed of nodes, which holds the
information, and arcs (or edges) for the connection between the nodes. Each node can have zero
or more nodes descending from it. The most bottom nodes are called lead nodes. The top most
node is the root node. All other nodes which are not leaf nodes are then body nodes.

Figure 21 – Tree

Figure 21 is an example of representation of a tree. The nodes are represented with the circles
and the arcs by a line connecting two nodes.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

33

2.8.3 Graphs

A graph is a kind of data structure in computer science. It consists of a set of nodes (or vertices)
and edges. The edges establish the relationship between the nodes, but there is no hierarchic
relationship between nodes in a graph.

A graph can be directed or undirected; the direction is a characteristic of the edges. In an
undirected graph, if there is an edge between two nodes A and B, A can be reached directly from
B and vice versa. With a directed graph, we can specify that the two nodes are connected only in
the direction of the edge but not in the opposite direction.

(a)

(b)

Figure 22 – (a) Directed and (b) Undirected Graphs

Figure 22 shows two examples of directed and undirected graphs. In the first example, the
direction of the edges is showed with the arrows. There is a lot of application for the graphs:
network flows, route problem, covering problem …

2.9 TECHNOLOGY

2.9.1 Python23

Python is both a very-high-level language (VHLL), and an object-oriented dynamic language
(OODL). Python is almost ideal as a scripting language interface for modern systems and as a
stand-alone language. This means that python may be used as well for building applications from
scratch as for executing some task needed by another system. Python is also often used as a glue-
language to combine components written in other language, like in C++.

Python is highly readable and the syntax is at most simple. The dynamic typing and binding in
Python makes everything easier and increases the productivity in applications development.
Python allows the organization of the code in package and module; this functionality maximizes
the code reuse and the program modularity.

Most people like Python because it provides productivity increasing. Since the programmer
doesn’t need to explicitly compile Python code, the development cycle is extremely fast. Thanks
to its high-level built-in type, a Python program may be three to five times shorter than the same

23 For more information, see (22) and (23).

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

34

program written in Java. This factor may increase to ten if we compare a program written in
Python with the same program written in C++.

Debugging a Python program is very simple. A bug or a bad input will always raise an exception.
The quickest way to debug a Python program is to introduce a few print statements in the code.

Another important advantage of Python is its portability. A Python program can be interpreted
in a number of operating systems, including Unix-based system, Mac-OS and Windows.

Python is absolutely free, even for commercial use. This means that you can sell a program
written in Python without pay any licensing fees.

2.9.2 XML

XML stands for extensible markup language. XML is a general specification to allow the user to
specify its own language to describe his data. This technology is widely used and has a lot of
powerful applications, particularly for the management, display and organization of data. One of
the main advantages of XML is that an XML file can be read both by human and machine.

XML is particularly suitable for configuration files. It is easy to extract the information because
there are programs called parsers which are able to read XML syntax and get the information out
for us. It is also possible to apply a transformation to a XML file. This can be useful in order to
display the information contained into the XML file or to transform the structure of the XML
file in a different one.

Beside the easy way to extract information, the control of the structure of an XML file is quite
simple and efficient. This control is useful when a human has to introduce or modify information
in that file, but also when the XML file is modified by a program.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

35

3 DESIGN

(COMMON)

3.1 VML MAIN COMPONENTS

The physicist works with virtual machines and wants to save the state of his VMs during his
work. In VML, folders which contain the virtual machines files are called working areas. When
VML saves the state of a virtual machine, it actually copies data from the virtual machine and
stores some metadata into another folder called repository. The virtual machine data and the
additional metadata compose a VML entry.

Figure 23 – General Architecture of VML

Figure 23 shows the general architecture of VML with the main components. The virtual
machines in the working areas can be directly used by the physicist (i.e., he can start, stop and
suspend them). A working area can contain zero or one virtual machine, and the user can have
more than one working area.

The entry into the repository corresponds to a virtual machine in a specific state, but the user
cannot directly use them from inside the repository. If he wants to restore an entry, he must ask
VML to do it. VML then extracts the entry into a working area and the physicist can then use the
virtual machine.

To summarize, the two fundamental processes done by VML are:

• save a virtual machine: VML copies some data from the virtual machine and creates a

new entry into the repository;

• build an entry: VML extract the entry from the repository and recreates the virtual

machine inside a working area.

VML is a versioning system adapted for virtual machines. Each VML entry correspond to a
version of the virtual machine and each version can be restored – not only the last one.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

36

3.1.1 Entries

The VML repository contains entries, which are descriptions of virtual machines at a given
state24. One of the VML central component is the VM-entry converter. It provides the
conversion in both directions: it can transform a virtual machine to an entry and an entry to a
virtual machine.

Basically, the VML repository could contain entire virtual machines instead of “complex” entries.
The problem is that a whole virtual machine may need a large amount of disk space to be stored.
One of VML’s goals is to reduce this size by not storing redundant information. VML stores only
some parts of the virtual machine into the repository. To recreate a virtual machine from these
parts, VML needs some metadata which explain how to rebuild the original VM. These “parts of
VM” and the metadata compose a VML entry.

VML cannot always store only some parts of a virtual machine. Sometimes it is necessary to store
the whole virtual machine into the repository. An entry which contains a whole virtual machine is
called a full entry.

An entry which does not contain a whole virtual machine is called a partial entry. VML can create a
partial entry only from a virtual machine which respects a pre condition: the parts of the virtual
machine which will not be stored in the repository can be found elsewhere25. This pre condition
is necessary to make VML able to restore the partial entry.

3.1.2 Repository

The repository is the “back-office” of VML. It stores different environments used by physicists.
His goal is to manage the entries and they related virtual machines files or environment files.

 More precisely the repository contains the files which compose the entries and also the metadata
of the entries. The files managed by the repository may represent virtual machines, an
environment or something else. This will not make a difference on how the repository will store
this information.

Note that the repository is used only as a storage system. This means that a file stored in the
repository will not be modifying. Also a virtual machine will never be started inside the repository
but outside, in a working area. The only action permit with repository is to add an entry to be
stored, retrieve an entry, delete an entry or consult the content of the repository.

24 Here “state” does not refer to the running, paused or shut down state of the VM. With “state
of a virtual machine” we refer the VM’s hard disk and RAM contents and the virtual machine
specific characteristics, like the configuration file and the other information used by the
virtualization platform to manage the VM.

25 For VML, “elsewhere” is another entry in the same repository or, in special cases,
downloadable from a known website.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

37

Repository

Figure 24 – Adding Entries in the VML Repository

Because of the size of the files, the folder used by the repository will grow very quickly. For this
reason, the repository has to be flexible as most as possible. It has to allow that the storage of the
entries can be hold by multiple physical disk or partition in order to dispatch the disk usage
consumption.

3.1.3 Working Area

A working area is a folder on the host machine’s file system which contains the virtual machine
files. The purpose of working areas is to simplify the VML user commands, by avoiding the use
of full paths in the most used VML commands. A working area has a simple identifier (its name)
and identifies a folder. The working area name can then replace the folder path in the VML
commands.

A working area can be empty (this means there is no virtual machine files in its folder) or contain
a VM. Working areas are used by VML in both main operations, “save a VM” and “build and
entry”. When saving a VM, the virtual machine files are contained in the working area folder.
When building an entry, the virtual machine is built in the working area folder.

The user is free to set as many working areas as he needs.

3.2 USE CASES

We took the time in the previous section to talk about the different components of VML. Now
we will specify more precisely what VML is able to do. For that we made a use case diagram to
split VML into separate functionality. Figure 25 show the main group of VML’s functionalities.

One of the two VML’s key functionalities is the use case “save new entry”. This use case
represents the part of VML which is in charge of taking a backup of the working environment of
a particular virtual machine. If the new entry must be placed in a new project, VML executes the
use case “add project” to add a new project for the entry.

The second most important use case is “open entry”. This use case offers the possibility of
opening the entries present in the repository. This use case is done by restoring the entry and
starting the virtual machine. This part of VML has to communicate with the virtual machine.

Use case “open entry” uses another use case, “restore entry”, which can be executed to build the
entry without automatically starting the virtual machine with VML.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

38

The use case “consult” displays information about the objects managed by VML, such as the
repository, the entries, the content of the working areas and some configuration parameters.

The next one is “export entry” which offers to the user a way to extract a specific entry from the
repository. This functionality is one of those who will make possible the work sharing between
the physicists.

In pair with the export we have “import entry” which takes in input the output of the use case
“export entry”. This use case permit the importation of VML entry into the repository. An entry
imported could also be directly built with the use case “restore entry” and opened with “open
entry”.

The use case “get CernVM” offers to the user the possibility of downloading a specific version
of CernVM by typing a simple VML command. The main goal of this functionality is to offer to
the physicist a quick way to start his work with CernVM. Browsing the CernVM website to find a
suitable version of their virtual machine will be no longer necessary. With the help of the use
cases “import entry”, “restore entry” and “open entry”, the user can directly import, restore
and/or open his virtual machine.

With the use case “consult available CernVM”, the user can consult the version and formats of
CERN virtual machines available on the CernVM website.

The use case “delete entry” holds the mechanism for the entries deletion by taking care about
the eventual dependency between entries.

The user can easily delete multiple entries by using the use cases “delete repository” and
“delete project”. The first one deletes all entries in the repository, and the second one deletes all
the entries in a specific project.

These were the most important functionality offered by VML. There is another group of
functionality who deals not directly with the entry management but more with the configuration
of VML, regarding to where the virtual machine will be run and where they will be stored.

The use cases “add repository/working area” are used to add a new repository respectively a
new working area in VML. Then it can be removed from VML by using the use case “delete
repository/working area”. Finally we have the uses cases “set default repository/working
area” which as its name says, set the current default repository and working area.

The last use case is “setup VML”. This use case will start a little wizard which is supposed to
help the user to create the first repository and the first working area.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

39

Figure 25 – VML Use Case Diagram

Andrea Cavalli
Julien Poffet

3.3 STORAGE AND RESTORAT

VML has different ways to create partial entries.
techniques used by VML to store full and partial entries and to rebuild the virtual machines from
these entries.

Incremental backups is a technique
technique is used by VML for the entry creation
virtual machine, VML stores only the differences from the last backup.
example of an incremental backup
machine and during his work, he wan

At the beginning, the virtual machine is in a state S1 and the physicist executes the “save”
command of VML. To be able to restore this virtu
of the VM into the repository, so the entry E1 which correspond to the VM state S1 contains the
entire machine.

The physicist continues his work into the machine
command. At this moment the virtual machine is in the state S2. Probably only a few amount of
data changed from the state S1, so VML does
the differences ∆1 between states S1 and S2. These differences compose the new e
other part of the virtual machine (
The disk space occupied by E2 is probably much less than the space occupied by E1.

The physicist works in the machine, which is now in the sta

S1 + ∆1 + ∆2 = S2 + ∆2 =

When the user asks VML to save this state, VML stores into the repository the difference
between states S2 and S3 and calls this entry E3. At this moment, the repository contains three
entries: E1, E2 and E3. Each entry corresponds to a different virtual machine state. E1 is a full
entry and E2 and E3 are partial entries.

Figure 26 shows how the virtual machine
physicist. The cubes upside the arrow represent
the name of the state of the VM.

Virtual Machine

40

STORAGE AND RESTORATION OF THE ENTRIES

VML has different ways to create partial entries. The next sections explain
techniques used by VML to store full and partial entries and to rebuild the virtual machines from

3.3.1 Incremental Backups

Incremental backups is a technique used to reduce the space occupied by data backups. This
d by VML for the entry creation. The idea is that at each time the user saves a

virtual machine, VML stores only the differences from the last backup. Figure
incremental backup sequence. In the example, the physicist works in a virtual

machine and during his work, he wants to save the state of the VM.

At the beginning, the virtual machine is in a state S1 and the physicist executes the “save”
command of VML. To be able to restore this virtual machine, VML needs to store a whole copy
of the VM into the repository, so the entry E1 which correspond to the VM state S1 contains the

his work into the machine and then executes another VML
his moment the virtual machine is in the state S2. Probably only a few amount of

data changed from the state S1, so VML does not copy to the repository the entire VM, but only
∆1 between states S1 and S2. These differences compose the new e

other part of the virtual machine (S1) is already in the repository, so VML doesn’t need to save it.
The disk space occupied by E2 is probably much less than the space occupied by E1.

The physicist works in the machine, which is now in the state S3. S3 is composed by:

∆2 = S3

When the user asks VML to save this state, VML stores into the repository the difference
between states S2 and S3 and calls this entry E3. At this moment, the repository contains three

2 and E3. Each entry corresponds to a different virtual machine state. E1 is a full
entry and E2 and E3 are partial entries.

Figure 26 – Incremental Backups in VML

virtual machine and the repository evolve during the work of the
upside the arrow represent the virtual machine. On the front of the cube is

the name of the state of the VM.

Diploma Project
Virtual Machine Logbook

ext sections explain the different
techniques used by VML to store full and partial entries and to rebuild the virtual machines from

used to reduce the space occupied by data backups. This
. The idea is that at each time the user saves a

Figure 26 shows an
n the example, the physicist works in a virtual

At the beginning, the virtual machine is in a state S1 and the physicist executes the “save”
al machine, VML needs to store a whole copy

of the VM into the repository, so the entry E1 which correspond to the VM state S1 contains the

and then executes another VML “save”
his moment the virtual machine is in the state S2. Probably only a few amount of

t copy to the repository the entire VM, but only
∆1 between states S1 and S2. These differences compose the new entry E2. The

1) is already in the repository, so VML doesn’t need to save it.
The disk space occupied by E2 is probably much less than the space occupied by E1.

te S3. S3 is composed by:

When the user asks VML to save this state, VML stores into the repository the difference ∆2
between states S2 and S3 and calls this entry E3. At this moment, the repository contains three

2 and E3. Each entry corresponds to a different virtual machine state. E1 is a full

and the repository evolve during the work of the
On the front of the cube is

Andrea Cavalli
Julien Poffet

The physicist works in the virtual machine and we represent
rectangles. By working in the virtual machine, the physicist modifies its state. The new state S
the virtual machine can be seen as the composition of the last state S
This composition is represented on the side of the cube.

The part of the figure below the arrow is the VML repository.
into the repository. The entry name is written on its front, followed by the name of the VM st
represented by the entry (inside the c
of the entry. For example, a cube with
entry E2 represent the virtual machine at state S2 and th
the difference ∆1 between state S1 and state S2.

At each step of Figure 26 is represented the state of the working area and the content of the
repository. Let’s consider the
the state S1, VML will copy the whole content of E1 to the
built) and the machine is restored. However, if the physicist wants to restore the state
must also copy the whole content of E1 (
difference between states S1 and S2). If the physicist asks to restore the state S3, VML must do
the same than for the state S2 and then add the content

Incremental backups is not the only technique which can be used to create partial entries. Let’s
imagine a physicist who works on a virtual machine and who uses incremental backups of the
VM. After a year, he may have tenth of e
VML must restore the entry
to the entry 1. Restore an entry may then take too much time.

A solution of this problem comes with the di
differential entries refer to only one entry which is stored into the repository. We call this entry
the base. When VML must build an entry, it has just to restore the base entry and the partial one.

Figure 27 is the equivalent of
E1 is the base image, and E2 and E3 are the partial entries. We
incremental backups at step 3. Instead of taking a difference between S2 and S3, VML stores the
difference between S1 and S3 into the entry E3.

Virtual Machine

41

The physicist works in the virtual machine and we represent this by increasing the size of the
By working in the virtual machine, the physicist modifies its state. The new state S

the virtual machine can be seen as the composition of the last state Sn-1 and the difference
This composition is represented on the side of the cube.

The part of the figure below the arrow is the VML repository. Cubes in this area
The entry name is written on its front, followed by the name of the VM st

represented by the entry (inside the curly brackets). On the side of the cube is written the content
of the entry. For example, a cube with E2 {S2} on the front and ∆1 on the side means that the
entry E2 represent the virtual machine at state S2 and that the entry itself is composed only by

∆1 between state S1 and state S2.

is represented the state of the working area and the content of the
Let’s consider the content of the repository at step 4. If the physicis
, VML will copy the whole content of E1 to the target (i.e., where the entry must be

and the machine is restored. However, if the physicist wants to restore the state
must also copy the whole content of E1 (S1) to the target and then add the content of E2 (the
difference between states S1 and S2). If the physicist asks to restore the state S3, VML must do
the same than for the state S2 and then add the content of E3.

3.3.2 Differential Backups

Incremental backups is not the only technique which can be used to create partial entries. Let’s
imagine a physicist who works on a virtual machine and who uses incremental backups of the
VM. After a year, he may have tenth of entries in his repository. Before to restore the entry
VML must restore the entry n-1, which needs that the entry n-2 has been restor
to the entry 1. Restore an entry may then take too much time.

A solution of this problem comes with the differential backups. With this technique, all the
entries refer to only one entry which is stored into the repository. We call this entry

. When VML must build an entry, it has just to restore the base entry and the partial one.

is the equivalent of Figure 26, but in this case VML uses differential backups. The entry
and E2 and E3 are the partial entries. We what changes from the
ep 3. Instead of taking a difference between S2 and S3, VML stores the

difference between S1 and S3 into the entry E3.

Figure 27 – Differential Backups in VML

Diploma Project
Virtual Machine Logbook

this by increasing the size of the
By working in the virtual machine, the physicist modifies its state. The new state Sn of

and the difference ∆n-1.

in this area are entries saved
The entry name is written on its front, followed by the name of the VM state

). On the side of the cube is written the content
on the side means that the

at the entry itself is composed only by

is represented the state of the working area and the content of the
t wants to restore

(i.e., where the entry must be
and the machine is restored. However, if the physicist wants to restore the state S2, VML

and then add the content of E2 (the
difference between states S1 and S2). If the physicist asks to restore the state S3, VML must do

Incremental backups is not the only technique which can be used to create partial entries. Let’s
imagine a physicist who works on a virtual machine and who uses incremental backups of the

ntries in his repository. Before to restore the entry n,
has been restoring… and so on

fferential backups. With this technique, all the
entries refer to only one entry which is stored into the repository. We call this entry

. When VML must build an entry, it has just to restore the base entry and the partial one.

, but in this case VML uses differential backups. The entry
what changes from the

ep 3. Instead of taking a difference between S2 and S3, VML stores the

Andrea Cavalli
Julien Poffet

3.4

Let’s consider the three entri
and E2 and E3 were two partial entries taken with the incremental backups. To restore E2, VML
needs E1. To restore E3, VML needs E2 and E1. We say that E3
depends on E1. Note that an entry can depends on more than one
directly depends always on a single
we say that E1 is the parent of E2
dependency with a connection line between the two entries.

We can represent the dependencies between entries with trees: at the
entries and at the bottom we have the partial entries which depend on the parents. The content
of the VML repository can be represented with a collection of trees, as show in

Figure 28

The tree on the left side of Figure
tree on the right is more complex. The
right:

• Save the state of the VM. This creates the full entry E4.

• Save twice the state of the VM

depends on E4. The second entry (E

• Save the state of the VM with a differenti

the changes since the last full entry E4, so it becomes E4’s child.

• Save twice the state of the VM with incremental backups

entry tree.

3.4.2

Taking a differential backup seems the only way to create a “brother” entry like E7 in
Incremental backups can only add a child entry to the last one, and a full backup create a whole
new tree. It is true that a different
is always a root’s child. Then how can we create a tree like the one in

26 This is true as long as we don’t have two entries which are exactly the same into a repository.
Even in this special case, we can simplify and consider that
or the second of the two twin entries.

Virtual Machine

42

DEPENDENCIES BETWEEN ENTRIES

3.4.1 Entry Tree

Let’s consider the three entries created during the example in Figure 26. E1 was the full entry
and E2 and E3 were two partial entries taken with the incremental backups. To restore E2, VML
needs E1. To restore E3, VML needs E2 and E1. We say that E3 depends on E1 and E2. E2 also
depends on E1. Note that an entry can depends on more than one entry (like E3), but an entry

a single entry (or zero)26. When entry E2 directly depends on entry E1,
of E2 and E2 is E1’s child. In Figure 26 and in Figure

dependency with a connection line between the two entries.

We can represent the dependencies between entries with trees: at the top we have the par
we have the partial entries which depend on the parents. The content

of the VML repository can be represented with a collection of trees, as show in Figure

 – Tree Structure of the Entries in the VML Repository

Figure 28 is generated by a sequence of incremental snapshots. The
right is more complex. The following sequence of actions creates the tr

Save the state of the VM. This creates the full entry E4.

Save twice the state of the VM with incremental backups. The first entry (E5

depends on E4. The second entry (E6) depends on E5.

Save the state of the VM with a differential backup. The differential entry (E7) contains

the changes since the last full entry E4, so it becomes E4’s child.

Save twice the state of the VM with incremental backups. E8 and E9 are added to the

 Adding New Branches in the VML Entry Tree

king a differential backup seems the only way to create a “brother” entry like E7 in
Incremental backups can only add a child entry to the last one, and a full backup create a whole
new tree. It is true that a differential backup creates a new branch on the tree, but the new entry
is always a root’s child. Then how can we create a tree like the one in Figure 29, with two brother

true as long as we don’t have two entries which are exactly the same into a repository.
Even in this special case, we can simplify and consider that a third entry only depends on the first
or the second of the two twin entries.

Diploma Project
Virtual Machine Logbook

. E1 was the full entry,
and E2 and E3 were two partial entries taken with the incremental backups. To restore E2, VML

on E1 and E2. E2 also
(like E3), but an entry

. When entry E2 directly depends on entry E1,
Figure 27 we show this

we have the parent
we have the partial entries which depend on the parents. The content

Figure 28.

is generated by a sequence of incremental snapshots. The
creates the tree on the

with incremental backups. The first entry (E5) directly

al backup. The differential entry (E7) contains

E8 and E9 are added to the

king a differential backup seems the only way to create a “brother” entry like E7 in Figure 28.
Incremental backups can only add a child entry to the last one, and a full backup create a whole

ial backup creates a new branch on the tree, but the new entry
, with two brother

true as long as we don’t have two entries which are exactly the same into a repository.
a third entry only depends on the first

Andrea Cavalli
Julien Poffet

entries (E12 and E14), children of a non
“save” command, but it is with the “restore” command.

Figure

Below is an example of actions sequence which could have generated the tree:

• Save the state of the VM. This creates the full entry E10.

• Save three times the state of the VM

E13 are created.

• Restore the state of entry E11

• Save the state of the VM with an incremental backup. Since we restored entry E11

before, the new entry is added as a new child of entry E11 and not as E13’s child.

The VML user is then free to come back to an old state of his virtual machine, use it and then
save the state, without affecting the entries already stored in the repository. H
using and saving both “original version” and “new revision” of the same virtual machine.

When the user wants to restore a specific entry, VML has to choose which entries are needed to
reconstruct the target entry. We called that t

Let’s take the example shown in
say from scratch, it means that the entry is built starting from the fi
path. This is the case when the user wants to build the entry in an empty working area, for
example.

The tree on the left of Figure
we want to build. On the right is the resulting build path, highlighted in blue and indicated with
the arrows. If we take a look at the entries dependencies in
path will be: #1, #3 and #4. So to reconstruct entry #4, VML will before reconstruct the entry
#1, then entry #3 and finally entry #4.

Virtual Machine

43

entries (E12 and E14), children of a non-root entry (E11)? It is not possible using only the
“save” command, but it is with the “restore” command.

Figure 29 – Example of Entry Tree With a New Branch

Below is an example of actions sequence which could have generated the tree:

e VM. This creates the full entry E10.

the state of the VM with incremental backups. Entries E11, E12 and

Restore the state of entry E11.

Save the state of the VM with an incremental backup. Since we restored entry E11

ore, the new entry is added as a new child of entry E11 and not as E13’s child.

The VML user is then free to come back to an old state of his virtual machine, use it and then
save the state, without affecting the entries already stored in the repository. H
using and saving both “original version” and “new revision” of the same virtual machine.

3.4.3 Build Path

When the user wants to restore a specific entry, VML has to choose which entries are needed to
reconstruct the target entry. We called that the build path. The build path is a list of entries.

Let’s take the example shown in Figure 30. We want to build entry #4 from scratch. When we
say from scratch, it means that the entry is built starting from the first (full) entry of the build
path. This is the case when the user wants to build the entry in an empty working area, for

Figure 30 shows the dependencies between entries and, in re
we want to build. On the right is the resulting build path, highlighted in blue and indicated with
the arrows. If we take a look at the entries dependencies in Figure 30 we can see that the build

will be: #1, #3 and #4. So to reconstruct entry #4, VML will before reconstruct the entry
#1, then entry #3 and finally entry #4.

Diploma Project
Virtual Machine Logbook

t possible using only the

with incremental backups. Entries E11, E12 and

Save the state of the VM with an incremental backup. Since we restored entry E11

ore, the new entry is added as a new child of entry E11 and not as E13’s child.

The VML user is then free to come back to an old state of his virtual machine, use it and then
save the state, without affecting the entries already stored in the repository. He can continue
using and saving both “original version” and “new revision” of the same virtual machine.

When the user wants to restore a specific entry, VML has to choose which entries are needed to
. The build path is a list of entries.

. We want to build entry #4 from scratch. When we
rst (full) entry of the build

path. This is the case when the user wants to build the entry in an empty working area, for

shows the dependencies between entries and, in red, the entry
we want to build. On the right is the resulting build path, highlighted in blue and indicated with

we can see that the build
will be: #1, #3 and #4. So to reconstruct entry #4, VML will before reconstruct the entry

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

44

Figure 30 – Build Path from Scratch

Now if we take the case of a not empty working area, the build path computation will be
different. In fact, if the working area already contains an entry, VML will try to use it – if possible
– to save time during the entry reconstruction. Let’s take another example. Figure 31 shows that
we want to reconstruct entry #6, but entry #3 is already present in the target working area. So in
this situation the build path will be: #3, #4 and #6. This means that VML will directly build the
entry number #4 on top of entry #3 and ends with the reconstruction of entry #6.

Figure 31 – Build Path from Entry

If we had to reconstruct the entry #6 from scratch, the build path would have been: #1, #3, #4
and #6. If we had to reconstruct entry #2, the build path would have been #1 and #2: the fact
that entry #3 is already in the working area does not help for the entry reconstruction

3.4.4 Entry Removal

The disk space needed by the repository may grow very quickly. The entries itself can occupy a
big amount of space on the disk. For these reasons, VML provides a functionality to delete the
entries. However, because of the dependency between entries, the entries should not be deleted
without taking some precautions.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

45

Figure 32 – Entry Removal – Fail

Let’s take a look at Figure 32. This example takes the case when the user asks to delete an entry
which has dependency. The user wants to delete entry #3. The problem is if VML delete entry
#3, VML will no longer be able to reconstruct entry #4. In this case, before to actually delete the
entry, VML warns the user that if he chooses to delete entry #3, he will be no longer able to
restore entry #4.

VML allows the user to delete more than one entry at once. In this case, VML can compute all
dependencies and see if the list of entry to delete will causes construction problems for the other
entries. Figure 33 shows that the user wants to delete entries #3 and #4. They can be deleted
without any problem because the other entries don’t need them to during their reconstruction.

Figure 33 – Entry Removal – Success

3.4.5 Entry ID

The purpose of this Section is to explain why VML needs to identify virtual machines and
entries, and how VML does that.

VML manages the repository content (the entries), but it doesn’t have the control on the virtual
machines – the sources of the “save” VML command and the targets of the entry reconstruction.
This means that after the user restores the state of a virtual machine using VML, he can do
whatever he wants on this VM: modify its content, replace it with another virtual machine, delete
it…

What happens if the user restores the state of a virtual machine using VML, then deletes the VM
and replaces it with a different one, and finally wants to save this new virtual machine with VML?
VML should not assume that the virtual machine the user wants to save is the last restored one.
VML must discover which virtual machine the user wants to save: it is a new one, never saved
before, or is maybe a VM which has previously been saved?

The first case is the simplest one: VML must just take a full backup of the virtual machine. The
second case is different: if the VM has previously been saved, at least one entry in the repository
matches this virtual machine. VML must then find this entry, in order to take an incremental

Andrea Cavalli
Julien Poffet

backup based on it. How can VML recognize the right entry? VML needs to relate the virtual
machine with the entry in the repository: this is done by assigning an identifier (ID) to ea
in the repository, which is the same than the identifier of the virtual machine.

We don’t discuss in this section how the virtual machine ID is read or computed, because is
implementation dependant. The basic concept is that VML uses IDs to know i
relationship between an entry in the repository and a virtual machine, and at the creation of the
entry, VML establish this relationship by assigning the virtual machine’s ID to the new entry.

Let’s see what happens in state 3 of
VML has to save the virtual machine at state S3. It has to different ways to do it:

• save the whole virtual machine (

• if the base S2 is already in the repository, save only

We know that:

S1 + ∆1 + ∆2 = S2 + ∆2 = S3

and that S2 can be reconstructed by building E2.

Figure 34 – Comparison of a

S2 is actually already available into the repository: entry E2 corresponds to
doesn’t directly contain S2 (it actually contains only a part of
recreate it by building E2 (which also needs E1).
S3, VML should take the right decision:
realize that S2 can be reconstructed by building E2.
virtual machine at state S2. By comparing the IDs, VML can recognize that a portion of the
virtual machine (S2) is already available in the repository.

Note that the ID identifies the state of a virtual machine disk, and not its memory state. This was
a choice taken during the design of the application: all VML entries contains data for the virtual
machine’s disk reconstruction, but only some VML entries can also restore the VM’s memory
state.

Virtual Machine

46

backup based on it. How can VML recognize the right entry? VML needs to relate the virtual
machine with the entry in the repository: this is done by assigning an identifier (ID) to ea
in the repository, which is the same than the identifier of the virtual machine.

We don’t discuss in this section how the virtual machine ID is read or computed, because is
implementation dependant. The basic concept is that VML uses IDs to know i
relationship between an entry in the repository and a virtual machine, and at the creation of the
entry, VML establish this relationship by assigning the virtual machine’s ID to the new entry.

happens in state 3 of Figure 26 (represented here in Figure 34).
VML has to save the virtual machine at state S3. It has to different ways to do it:

save the whole virtual machine (S2 + ∆2) or

2 is already in the repository, save only ∆2.

∆2 = S3

2 can be reconstructed by building E2.

Comparison of a Virtual Machine With the Entries in the Repository

2 is actually already available into the repository: entry E2 corresponds to it. Even if entry E2
2 (it actually contains only a part of S2, ∆1), we know that we can

recreate it by building E2 (which also needs E1). Now, when saving the virtual machine at state
should take the right decision: copy only ∆2. To be able to take this decision, it needs to

2 can be reconstructed by building E2. E2’s ID is the same than the ID of the
ate S2. By comparing the IDs, VML can recognize that a portion of the

virtual machine (S2) is already available in the repository.

Note that the ID identifies the state of a virtual machine disk, and not its memory state. This was
design of the application: all VML entries contains data for the virtual

machine’s disk reconstruction, but only some VML entries can also restore the VM’s memory

Diploma Project
Virtual Machine Logbook

backup based on it. How can VML recognize the right entry? VML needs to relate the virtual
machine with the entry in the repository: this is done by assigning an identifier (ID) to each entry

We don’t discuss in this section how the virtual machine ID is read or computed, because is
implementation dependant. The basic concept is that VML uses IDs to know if there is a
relationship between an entry in the repository and a virtual machine, and at the creation of the
entry, VML establish this relationship by assigning the virtual machine’s ID to the new entry.

). At this moment,
VML has to save the virtual machine at state S3. It has to different ways to do it:

epository

. Even if entry E2
∆1), we know that we can

, when saving the virtual machine at state
∆2. To be able to take this decision, it needs to

E2’s ID is the same than the ID of the
ate S2. By comparing the IDs, VML can recognize that a portion of the

Note that the ID identifies the state of a virtual machine disk, and not its memory state. This was
design of the application: all VML entries contains data for the virtual

machine’s disk reconstruction, but only some VML entries can also restore the VM’s memory

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

62

8 BIBLIOGRAPHY

1. Williams, David E. and Garcia, Juan. Virtualization with Xen. s.l. : Elsevier Science Ltd, 2007.

2. VIX API. VMware. [Online] http://www.vmware.com/support/developer/vix-api/.

3. rPath. rPath. [Online] http://www.rpath.com/corp/.

4. CVS - Concurrent Versions System. [Online] http://www.nongnu.org/cvs/.

5. Subversion. Tigris.org. [Online] http://subversion.tigris.org/.

6. The Athena Framework. CERN. [Online] http://atlas-proj-computing-tdr.web.cern.ch/atlas-
proj-computing-tdr/Html/Computing-TDR-21.htm.

7. Xen. [Online] http://xen.org/.

8. XenApi. Xen Wiki. [Online] http://wiki.xensource.com/xenwiki/XenApi.

9. User-mode Linux Kernel. [Online] http://user-mode-linux.sourceforge.net/.

10. VMware Server. VMware. [Online] http://www.vmware.com/products/server/.

11. VMware Player. VMware. [Online] http://www.vmware.com/products/player/.

12. Parallels Workstation. Parallels. [Online]
http://www.parallels.com/en/products/workstation/.

13. VirtualBox. [Online] http://www.virtualbox.org/.

14. innotek GmbH. innotek VirtualBox User Manual. Version 1.5.6. 2008.
http://www.virtualbox.org/download/UserManual.pdf.

15. Microsoft Virtual PC. Microsoft. [Online]
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx.

16. Microsoft Virtual Server. Microsoft. [Online]
http://www.microsoft.com/windowsserversystem/virtualserver/.

17. IEEE 803.2 Ethernet Working Group. [Online] http://www.ieee802.org/3/.

18. cksum. The Open Group. [Online]
http://www.opengroup.org/onlinepubs/009695399/utilities/cksum.html.

19. Hash function. Wikipedia. [Online] http://en.wikipedia.org/wiki/Hash_(computer_science).

20. Henson, Val. An Analysis of Compare-by-hash. [Online]
http://www.valhenson.org/review/hash.pdf.

21. Harwood, Mike. Storage Basics: Backup Strategies. Enterprise Storage Forum. [Online]
September 24, 2003.
http://www.enterprisestorageforum.com/management/features/article.php/11186_3082691_1.

22. Lutz, Mark. Programming Python. s.l. : O'Reilly, 1996.

23. Python Programming Language - Official Website. [Online] http://python.org/.

24. Cavalli, Andrea and Poffet, Julien. SecurVMone - Project's Report.

25. What Files Make Up a Virtual Machine? VMware. [Online]
http://www.vmware.com/support/ws5/doc/ws_learning_files_in_a_vm.html.

26. rdiff-backup. [Online] http://www.gnu.org/savannah-checkouts/non-gnu/rdiff-backup/.

27. rsync. [Online] http://samba.anu.edu.au/rsync/.

Andrea Cavalli
Julien Poffet

Diploma Project
Virtual Machine Logbook

63

28. rPath. Application to Appliance.

29. Buncic, Predrag. Portable Analysis Environment Using Virtualization Technology.

30. Filesystem in Userspace. [Online] http://fuse.sourceforge.net/.

31. Wikipedia. [Online] http://en.wikipedia.org/wiki/File:FUSE_structure.svg.

32. Parrot. [Online] http://www.cse.nd.edu/~ccl/software/parrot/.

33. Overview of Parrot. [Online] http://www.cse.nd.edu/~ccl/software/parrot/parrot-poster.jpg.

34. Chirp. [Online] http://www.cse.nd.edu/~ccl/software/chirp/.

35. Douglas Thain, Christopher Moretti and Jeffrey Hemmes. Chirp: A Practical Global
Filesystem for Cluster and Grid Computing. 2008.

